Evaluation of the effectiveness of the multichannel register Auditory Steady-state Responses at Multiple frequencies (ASSR-Mf)
DOI:
https://doi.org/10.51445/sja.auditio.vol3.2013.0044Keywords:
Auditory Evoked Potential, hearing loss, multichannel, multiple frequenciesAbstract
Steady-state Auditory Evoked Potentials at multiple frequencies (ASSR-Mf) have reached a wide diffusion in the objective evaluation of hearing and have usually been recorded in a simple set-up of a bipolar lead, so there are no reports that characterize them in a multi-channel record setup.
Objectives: To evaluate the efficacy of the new multi-channel recording methodology of the ASSR-Mf with high spatial resolution and to determine the effect of the physical parameters of acoustic stimulation on its amplitude and phase.
Methods: A sample of 47 audiologically healthy young adults is studied. Monaural stimulation in the right ear with tones of 500 and 4000 Hz, amplitude modulated at 40 and 80 Hz. Recording is performed with the 10/20 montage and a modified 10/10 montage focused on the parietotemporal region of the left hemisphere.
Results: The PEAeeMf obtains a high detection percentage in all the recording leads, similar to those obtained in the standard recording, the recording lead has a significant effect on the detection and amplitude of the potential by modulation at 40 Hz, while the carrier and modulating frequencies have a significant effect on the amplitude and phase of the potential.
Conclusions: The multi-channel extended recording setup is effective for obtaining the MFEPE, so this design can be used with veracity for the design of optimized electroaudiometric evaluation protocols and for the study of the topography of auditory responses.
Downloads
Visibility and Altmetrics
Metrics
References
Alaerts J, Luts H, Van Dun B, Desloovere C, Wouters J. (2010). Latencies of auditory steady-state responses recorded in early infancy. Audiol Neurootol, 15(2): 116-27. https://doi.org/10.1159/000231637
Bahmer A, Baumann U. (2010). Recording and online analysis of auditory steady state responses (ASSR) in Matlab. J Neurosci Methods, 187(1): 105-113. https://doi.org/10.1016/j.jneumeth.2009.12.012
Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E. (2008). Rapid extraction of auditory feature contingencies. Neuroimage, 41: 1111-1119. https://doi.org/10.1016/j.neuroimage.2008.03.040
Brennan SK, Brooke RE, Stevens JC, Brow BH. (2010). Effect of varying phase between frequency and amplitude modulation on bone conduction auditory steady state responses. Ear and Hearing, 31(6): 815-824. https://doi.org/10.1097/AUD.0b013e3181e508f6
Cheah LA, Hou M. (2010). Real-time detection of auditory steadystate responses. Conf Proc IEEE Eng Med Biol Soc, 2010:1382-1385. https://doi.org/10.1109/IEMBS.2010.5626731
D'Haenens W, Vinck BM, Maes L, Bockstael A, Keppler H, Philips B, Swinnen F, Dhooge I. (2010). Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steadystate response technique. Clinical Neurophysiology, 121: 267-1278. https://doi.org/10.1016/j.clinph.2010.03.008
D'Haenens W, Vinck BM, De Vel E, Maes L, Bockstael A, Keppler H, Philips B, Swinnen F, Dhooge I. (2008). Auditory steady-state responses in normal hearing adults: a test-retest reliability study. Int J Audiol, 47(8): 489-98. https://doi.org/10.1080/14992020802116136
Dimitrijevic A, Lolli B, Michalewski HJ, Pratt H, Zeng FG, Starr A. (2009). Intensity changes in a continuous tone: Auditory cortical potentials comparison with frequency changes. Clinical Neurophysiology, 120: 374-383. https://doi.org/10.1016/j.clinph.2008.11.009
Dimitrijevic A, Michalewski HJ, Zeng FG, Pratt H, Starr A. (2008). Frequency changes in a continuous tone: Auditory cortical potentials. Clinical Neurophysiology, 119: 2111-2124. https://doi.org/10.1016/j.clinph.2008.06.002
Duarte JL, Alvarenga KF, Garcia TM, Costa Filho OA, Lins OG. (2008). Auditory steady-state response in the auditory evaluation: clinical application. Pro Fono, 20 (2):105-110. https://doi.org/10.1590/S0104-56872008000200006
Emara AA, Gabr TA. (2010). Auditory steady state response in auditory neuropathy. J Laryngol Otol, 124 (9): 950-956. https://doi.org/10.1017/S0022215110000630
Griskova I, Morup M, Parnas J, Ruksenas O, Arnfred SM. (2007). The amplitude and phase precision of 40 Hz auditory steadystate response depend on the level of arousal. Exp Brain Res, 183 (1): 133-138. https://doi.org/10.1007/s00221-007-1111-0
Jafari Z, Malayeri S, Ashayeri H, Farahani MA. (2009). Adults with auditory neuropathy: comparison of auditory steady-state response and pure-tone audiometry. J Am Acad Audiol, 20 (10): 621-628. https://doi.org/10.3766/jaaa.20.10.4
John MS, Picton TW. (2000). Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hearing Research, 141: 57-79. https://doi.org/10.1016/S0378-5955(99)00209-9
Lalor EC, Power AJ, Reilly RB, Foxe JJ. (2009). Resolving precise temporal processing properties of the auditory system using continuous stimuli. J Neurophysiol, 102 (1): 349-59. https://doi.org/10.1152/jn.90896.2008
Lazzouni L, Ross B, Voss P, Lepore F. (2010). Neuromagnetic auditory steady-state responses to amplitude modulated sounds following dichotic or monaural presentation. Clinical Neurophysiology, 121: 200-207. https://doi.org/10.1016/j.clinph.2009.11.004
Liebler S, Hoth S, Plinkert PK. (2008). Steady-state responses of the auditory system: a comparison of different methods. HNO, 56 (10): 1025-39. https://doi.org/10.1007/s00106-008-1694-1
Lin YH, Ho HC, Wu HP (2009). Comparison of auditory steadystate responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss. Auris Nasus Larynx, 36 (2): 140-145. https://doi.org/10.1016/j.anl.2008.04.009
Markessis E, Poncelet L, Colin C, Coppens A, Hoonhorst I, Kadhim H, Deltenre P (2009). Frequency tuning curves derived from auditory steady state evoked potentials: a proof-of-concept study. Ear Hear. 30(1):43-53. https://doi.org/10.1097/AUD.0b013e31818fbb7a
Ménard M, Gallégo S, Berger-Vachon C, Collet L, Thai-Van H (2008). Relationship between loudness growth function and auditory steady-state response in normal-hearing subjects. Hear Res, 235 (1- 2): 105-113. https://doi.org/10.1016/j.heares.2007.10.007
Michel CM, Murray MM, Lantz G, Gonzales SL, Spinelli L, Grave de Peralta, R (2004). Invited review EEG source imaging. Clinical Neurophysiology, 115: 2195-2222. https://doi.org/10.1016/j.clinph.2004.06.001
Mukamel R, Nir Y, Harel M, Arieli A, Malach R, Fried I (2010). Invariance of fi ring rate and fi eld potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapping. doi: 10.1002/hbm.21100 https://doi.org/10.1002/hbm.21100
Pérez MC (2007.) Programa Nacional de pesquisa de pérdidas auditivas. Conferencia dictada en el Ministerio de Salud Pública, Las Habana. [monografía en CD-ROM]
Pérez MC, Torres A, Savio G, Eimil E (2003). Los Potenciales Evocados Auditivos de Estado Estable a Múltiples Frecuencias y su valor en la evaluación objetiva de la audición. Revista electrónica de audiología, 2:42-50.Disponible En: http://www.auditio.com/revista/ pdf/vol2/2/0202.
Pérez MC, Valdés M, Gaya JA, Charroó L (2006). Programa Cubano de Implante Coclear. I Congreso Internacional de Genética Comunitaria. La Habana, Cuba.
Qian L, Yi W, Xingqi L, Yinsheng C, Wenying N, Lili X, Yinghui L (2010). Development of tone-pip auditory brainstem responses and auditory steady-state responses in infants aged 0-6 months. Acta Otolaryngol, 130 (7): 824-830. https://doi.org/10.3109/00016480903471069
Ribeiro FM, Carvallo RM, Marcoux AM (2010). Auditory steadystate evoked responses for preterm and term neonates. Audiol Neurootol, 15 (2): 97-110. https://doi.org/10.1159/000231635
Rodrigues GR, Lewis DR, Fichino SN (2010). Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses. Braz J Otorhinolaryngol, 76 (1): 96-101.
Rodrigues GR, Lewis DR (2010). Threshold prediction in children with sensorioneural hearing loss using the auditory steady-state responses and tone-evoked auditory brain stem response. Int J Pediatr Otorhinolaryngol, 74 (5): 540-546. https://doi.org/10.1016/j.ijporl.2010.02.017
Savio G, Mijares E, Pérez MC, Vega M, Lage A, Hernández D (2007). Efi ciencia de la detección automática de potenciales evocados auditivos de estado estable a múltiples frecuencias evaluada mediante la metodología ROC. Revista de Logopedia, Foniatría y Audiología, 27 (1): 12-23. https://doi.org/10.1016/S0214-4603(07)70067-0
Small SA, Stapells DR (2008). Normal ipsilateral/contralateral asymmetries in infant multiple auditory steady-state responses to airand bone-conduction stimuli. Ear Hear, 29 (2):185-98. https://doi.org/10.1097/01.aud.0000305157.83012.f4
Swanepoel D, Ebrahim S (2009). Auditory steady-state response and auditory brainstem response thresholds in children. Eur Arch Otorhinolaryngol, 266 (2): 213-219. https://doi.org/10.1007/s00405-008-0738-1
Tlumak AI, Rubinstein E, Durrant JD (2007). Meta-analysis of variables that affect accuracy of threshold estimation via measurement of the auditory steady-state response (ASSR). Int J Audiol, 46 (11): 692-710. https://doi.org/10.1080/14992020701482480
Tlumak AI, Durrant JD, Delgado RE, Boston JR (2011). Steadystate analysis of auditory evoked potentials over a wide range of stimulus repetition rates: Profi le in adults. International Journal of Audiology, 50 (7): 448-458. https://doi.org/10.3109/14992027.2011.560903
Torres-Fortuny A (2004). Desarrollo de los potenciales auditivos de estado estable como método objetivo para evaluar la audición residual. Tesis presentada en opción al grado científi co de Doctor en Ciencias Médicas. Ciudad de La Habana.
Valdés JL, Pérez MC, Martin V, Savio G, Sierra C, Rodríguez E (1997). Comparison of the statistical indicators for the automatic detection of 80 Hz auditory steady state responses. Ear and Hearing, 18:420-429. https://doi.org/10.1097/00003446-199710000-00007
Van Dun B, Verstraeten S, Alaerts J, Luts H, Moonen M, Wouters J (2008). A fl exible research platform for multi-channel auditory steady-state response measurements. J Neurosci Methods, 169 (1): 239-48. https://doi.org/10.1016/j.jneumeth.2007.12.002
Van Dun B, Wouters J, Moonen M (2009). Optimal electrode selection for multi-channel electroencephalogram based detection of auditory steady-state responses. J Acoust Soc Am, 126 (1): 254-68. https://doi.org/10.1121/1.3133872
Van Maanen A, Stapells DR (2009). Normal multiple auditory steady-state response thresholds to air-conducted stimuli in infants. J Am Acad Audiol, 20 (3): 196-207. https://doi.org/10.3766/jaaa.20.3.6
Van Maanen A, Stapells DR (2010). Multiple-ASSR thresholds in infants and young children https://doi.org/10.3766/jaaa.21.8.5
Published
Versions
- 2021-09-15 (2)
- 2012-04-01 (1)
How to Cite
Issue
Section
License
Copyright (c) 2013 Asociación Española de Audiología
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Articles published after 2020
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed, unless otherwise indicated, under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. The authors can choose between the following Creative Commons licenses: https://creativecommons.org/about/cclicenses/
Articles published between 2001 and 2020
The texts published in this journal in the section "AUDITIO 2001-2020" are subject - unless otherwise indicated - to a Creative Commons Attribution 3.0 Spain license. You can copy, distribute, communicate them publicly, make derivative works and commercial uses provided that you acknowledge the credits of the works (authorship, name of the journal, publishing institution) in the manner specified by the authors or by the journal. The full license can be consulted at http://creativecommons.org/licenses/by/3.0/es/deed.es.