Bases moleculares de la sordera: envejecimiento y nuevas fronteras en la investigación auditiva
DOI:
https://doi.org/10.51445/sja.auditio.vol9.2025.123Palabras clave:
Presbiacusia, Respuesta inflamatoria, Equilibrio redox, ExposomaResumen
La pérdida auditiva asociada a la edad, conocida como presbiacusia, constituye una de las causas más frecuentes de discapacidad sensorial a nivel mundial. Su origen es multifactorial, determinado por factores genéticos, ambientales, fisiológicos y relacionados con el estilo de vida. Su impacto en el deterioro cognitivo y en la aparición de enfermedades neurodegenerativas ha impulsado un renovado interés por comprender sus bases moleculares, epigenéticas y genéticas.
En esta revisión abordamos los principales mecanismos implicados en la degeneración auditiva vinculada al envejecimiento, identificados tanto en modelos experimentales como en estudios epidemiológicos. Nos centraremos en la respuesta al daño celular como desencadenante de estrés oxidativo, en la neuroinflamación y en las mutaciones genéticas que aumentan la susceptibilidad a la presbiacusia. Asimismo, se analizan las técnicas de diagnóstico por imagen y las perspectivas terapéuticas emergentes que podrían transformar el abordaje clínico de la sordera en un futuro próximo.
Descargas
Visibility and Altmetrics
Estadísticas globales ℹ️
|
4
Visualizaciones
|
0
Descargas
|
|
4
Total
|
|
Citas
Akil, O., Seal, R. P., Burke, K., Wang, C., Alemi, A., During, M., Edwards, R. H., y Lustig, L. R. (2012). Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron, 75(2), 283-93. https://doi.org/10.1016/j.neuron.2012.05.019
Al-Moyed, H., Cepeda, A. P., Jung, S., Moser, T., Kügler, S., y Reisinger, E. (2019). A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Molecular Medicine, 11(1), e9396. https://doi.org/10.15252/emmm.201809396
Asli, R. H., Akbarpour, M., Lahiji, M. R., Leyli, E. K., Pastadast, M., Ramezani, H., y Nemati, S. (2023). Evaluation of the relationship between prestin serum biomarker and sensorineural hearing loss: A case-control study. European Archives of Oto-Rhino-Laryngology: Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): Affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery, 280(3), 1147–1153. https://doi.org/10.1007/s00405-022-07586-2
Baumgartner, L. S., Moore, E., Shook, D., Messina, S., Day, M. C., Green, J., Nandy, R., Seidman, M., y Baumgartner, J. E. (2018). Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. Journal of Audiology & Otology, 22(4), 209–222. https://doi.org/10.7874/jao.2018.00115
Benkafadar, N., François, F., Affortit, C., Casas, F., Ceccato, J.-C., Menardo, J., Venail, F., Malfroy-Camine, B., Puel, J.-L., y Wang, J. (2019). ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Molecular Neurobiology, 56(8), 5950–5969. https://doi.org/10.1007/s12035-019-1493-6
Bermúdez-Muñoz, J. M., Celaya, A. M., García-Mato, Á., Muñoz-Espín, D., Rodríguez-de la Rosa, L., Serrano, M., y Varela-Nieto, I. (2021). Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel, Switzerland), 10(9), 1351. https://doi.org/10.3390/antiox10091351
Bermúdez-Muñoz, J. M., Celaya, A. M., Hijazo-Pechero, S., Wang, J., Serrano, M., y Varela-Nieto, I. (2020). G6PD overexpression protects from oxidative stress and age-related hearing loss. Aging Cell, 19(12), e13275. https://doi.org/10.1111/acel.13275
Bouzid, A., Smeti, I., Chakroun, A., Loukil, S., Gibriel, A. A., Grati, M., Ghorbel, A., y Masmoudi, S. (2018). CDH23 Methylation Status and Presbycusis Risk in Elderly Women. Frontiers in Aging Neuroscience, 10, 241. https://doi.org/10.3389/fnagi.2018.00241
Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., y Sheu, S.-S. (2004). Calcium, ATP, and ROS: A mitochondrial love-hate triangle. American Journal of Physiology. Cell Physiology, 287(4), C817-833. https://doi.org/10.1152/ajpcell.00139.2004
Buschle, M., Hamerschmidt, R., Matias, J. E. F., Zanini, O. P. L., Coelho, L. O. de M., y Polanski, J. F. (2024). The Role of Computed Tomography in the Diagnosis of Congenital Sensorineural Hearing Loss. International Archives of Otorhinolaryngology, 28(3), e387–e393. https://doi.org/10.1055/s-0044-1786827
Celaya, A. M., Rodríguez-de la Rosa, L., Bermúdez-Muñoz, J. M., Zubeldia, J. M., Romá-Mateo, C., Avendaño, C., Pallardó, F. V., y Varela-Nieto, I. (2021). IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells, 10(7), 1686. https://doi.org/10.3390/cells10071686
Celaya, A. M., Sánchez-Pérez, I., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Pintado-Berninches, L., Perona, R., Murillo-Cuesta, S., y Varela-Nieto, I. (2019). Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. ELife, 8. https://doi.org/10.7554/eLife.39159
Cervantes, B., Arana, L., Murillo-Cuesta, S., Bruno, M., Alkorta, I., y Varela-Nieto, I. (2019). Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. Journal of Clinical Medicine, 8(9). https://doi.org/10.3390/jcm8091464
Chadha, S., Kamenov, K., y Cieza, A. (2021). The world report on hearing, 2021. Bulletin of the World Health Organization, 99(4), 242-242A. https://doi.org/10.2471/BLT.21.285643
Chen, Y.-C., Chen, H., Jiang, L., Bo, F., Xu, J.-J., Mao, C.-N., Salvi, R., Yin, X., Lu, G., y Gu, J.-P. (2018). Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI. Frontiers in Behavioral Neuroscience, 12, 44. https://doi.org/10.3389/fnbeh.2018.00044
Ciorba, A., Hatzopoulos, S., Bianchini, C., Aimoni, C., Skarzynski, H., y Skarzynski, P. (2015). Genetics of presbycusis and presbystasis. International Journal of Immunopathology and Pharmacology, 28(1), 29–35. https://doi.org/10.1177/0394632015570819
Conte, G., Di Berardino, F., Sina, C., Zanetti, D., Scola, E., Gavagna, C., Gaini, L., Palumbo, G., Capaccio, P., y Triulzi, F. (2017). MR Imaging in Sudden Sensorineural Hearing Loss. Time to Talk. AJNR. American Journal of Neuroradiology, 38(8), 1475–1479. https://doi.org/10.3174/ajnr.A5230
Cruickshanks, K. J., Nondahl, D. M., Tweed, T. S., Wiley, T. L., Klein, B. E. K., Klein, R., Chappell, R., Dalton, D. S., y Nash, S. D. (2010). Education, occupation, noise exposure history and the 10-yr cumulative incidence of hearing impairment in older adults. Hearing Research, 264(1–2), 3–9. https://doi.org/10.1016/j.heares.2009.10.008
Dawes, P., Cruickshanks, K. J., Moore, D. R., Edmondson-Jones, M., McCormack, A., Fortnum, H., y Munro, K. J. (2014). Cigarette smoking, passive smoking, alcohol consumption, and hearing loss. Journal of the Association for Research in Otolaryngology: JARO, 15(4), 663–674. https://doi.org/10.1007/s10162-014-0461-0
El-Sharkawy, L. Y., Brough, D., y Freeman, S. (2020). Inhibiting the NLRP3 Inflammasome. Molecules (Basel, Switzerland), 25(23), 5533. https://doi.org/10.3390/molecules25235533
Espino Guarch, M., Font-Llitjós, M., Murillo-Cuesta, S., Errasti-Murugarren, E., Celaya, A. M., Girotto, G., Vuckovic, D., Mezzavilla, M., Vilches, C., Bodoy, S., Sahún, I., González, L., Prat, E., Zorzano, A., Dierssen, M., Varela-Nieto, I., Gasparini, P., Palacín, M., y Nunes, V. (2018). Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. ELife, 7, e31511. https://doi.org/10.7554/eLife.31511
Fetoni, A. R., Picciotti, P. M., Paludetti, G., y Troiani, D. (2011). Pathogenesis of presbycusis in animal models: A review. Experimental Gerontology, 46(6), 413–425. https://doi.org/10.1016/j.exger.2010.12.003
Fu, X., Sun, X., Zhang, L., Jin, Y., Chai, R., Yang, L., Zhang, A., Liu, X., Bai, X., Li, J., Wang, H., y Gao, J. (2018). Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. The Journal of Clinical Investigation, 128(11), 4938–4955. https://doi.org/10.1172/JCI98058
Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W.-H., Pan, B., Hu, Y.-J., Hu, J. H., Thompson, D. B., Shu, Y., Li, Y., Wang, H., Yang, S., Xu, Q., Polley, D. B., Liberman, M. C., Kong, W.-J., Holt, J. R., Chen, Z.-Y., y Liu, D. R. (2018). Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 553(7687), 217–221. https://doi.org/10.1038/nature25164
Gates, G. A., y Mills, J. H. (2005). Presbycusis. Lancet (London, England), 366(9491), 1111–1120. https://doi.org/10.1016/S0140-6736(05)67423-5
Gregory, G. E., Munro, K. J., Couper, K. N., Pathmanaban, O. N., y Brough, D. (2023). The NLRP3 inflammasome as a target for sensorineural hearing loss. Clinical Immunology (Orlando, Fla.), 249, 109287. https://doi.org/10.1016/j.clim.2023.109287
Han, C., Linser, P., Park, H.-J., Kim, M.-J., White, K., Vann, J. M., Ding, D., Prolla, T. A., y Someya, S. (2016). Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice. Neurobiology of Aging, 43, 58–71. https://doi.org/10.1016/j.neurobiolaging.2016.03.023
Han, H. H., Ge, P.-X., Li, W.-J., Hu, X.-L., y He, X.-P. (2025). Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO-). Sensors (Basel, Switzerland), 25(10), 3018. https://doi.org/10.3390/s25103018
Izumikawa, M., Minoda, R., Kawamoto, K., Abrashkin, K. A., Swiderski, D. L., Dolan, D. F., Brough, D. E., y Raphael, Y. (2005). Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nature Medicine, 11(3), 271–276. https://doi.org/10.1038/nm1193
Jafari, Z., Copps, T., Hole, G., Kolb, B. E., y Mohajerani, M. H. (2020). Noise Damage Accelerates Auditory Aging and Tinnitus: A Canadian Population-Based Study. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 41(10), 1316–1326. https://doi.org/10.1097/MAO.0000000000002848
Keithley, E. M. (2020). Pathology and mechanisms of cochlear aging. Journal of Neuroscience Research, 98(9), 1674–1684. https://doi.org/10.1002/jnr.24439
Kohrman, D. C., Wan, G., Cassinotti, L., y Corfas, G. (2020). Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harbor Perspectives in Medicine, 10(1), a035493. https://doi.org/10.1101/cshperspect.a035493
Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., y Miller, J. M. (2007). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research, 226(1–2), 22–43. https://doi.org/10.1016/j.heares.2006.10.006
Li, H., Liu, H., y Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299. https://doi.org/10.1038/nm925
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England), 396(10248), 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., y Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001
Lv, J., Wang, H., Cheng, X., Chen, Y., Wang, D., Zhang, L., Cao, Q., Tang, H., Hu, S., Gao, K., Xun, M., Wang, J., Wang, Z., Zhu, B., Cui, C., Gao, Z., Guo, L., Yu, S., Jiang, L., … Shu, Y. (2024). AAV1-hOTOF gene therapy for autosomal recessive deafness 9: A single-arm trial. Lancet (London, England), 403(10441), 2317–2325. https://doi.org/10.1016/S0140-6736(23)02874-X
Martínez-Vega, R., Garrido, F., Partearroyo, T., Cediel, R., Zeisel, S. H., Martínez-Álvarez, C., Varela-Moreiras, G., Varela-Nieto, I., y Pajares, M. A. (2015). Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(2), 418–432. https://doi.org/10.1096/fj.14-259283
Martínez-Vega, R., Partearroyo, T., Vallecillo, N., Varela-Moreiras, G., Pajares, M. A., y Varela-Nieto, I. (2015). Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. The Journal of Nutritional Biochemistry, 26(12), 1424–1433. https://doi.org/10.1016/j.jnutbio.2015.07.011
Martinon, F. (2010). Signaling by ROS drives inflammasome activation. European Journal of Immunology, 40(3), 616–619. https://doi.org/10.1002/eji.200940168
Menardo, J., Tang, Y., Ladrech, S., Lenoir, M., Casas, F., Michel, C., Bourien, J., Ruel, J., Rebillard, G., Maurice, T., Puel, J.-L., y Wang, J. (2012). Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxidants & Redox Signaling, 16(3), 263–274. https://doi.org/10.1089/ars.2011.4037
Mianné, J., Chessum, L., Kumar, S., Aguilar, C., Codner, G., Hutchison, M., Parker, A., Mallon, A.-M., Wells, S., Simon, M. M., Teboul, L., Brown, S. D. M., y Bowl, M. R. (2016). Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Medicine, 8(1), 16. https://doi.org/10.1186/s13073-016-0273-4
Murillo-Cuesta, S., Celaya, A. M., Cervantes, B., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Contreras, J., Sánchez-Pérez, I., y Varela-Nieto, I. (2021). Therapeutic efficiency of the APAF-1 antagonist LPT99 in a rat model of cisplatin-induced hearing loss. Clinical and Translational Medicine, 11(4), e363. https://doi.org/10.1002/ctm2.363
Murillo-Cuesta, S., Contreras, J., Zurita, E., Cediel, R., Cantero, M., Varela-Nieto, I., y Montoliu, L. (2010). Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell & Melanoma Research, 23(1), 72–83. https://doi.org/10.1111/j.1755-148X.2009.00646.x
Murillo-Cuesta, S., Lara, E., Bermúdez-Muñoz, J. M., Torres-Campos, E., Rodríguez-de la Rosa, L., López-Larrubia, P., Erickson, S. R., & Varela-Nieto, I. (2023). Protection of lipopolysaccharide-induced otic injury by a single dose administration of a novel dexamethasone formulation. Translational Medicine Communications, 8(1), 23. https://doi.org/10.1186/s41231-023-00156-6
Noble, K., Brown, L., Elvis, P., y Lang, H. (2022). Cochlear Immune Response in Presbyacusis: A Focus on Dysregulation of Macrophage Activity. Journal of the Association for Research in Otolaryngology: JARO, 23(1), 1–16. https://doi.org/10.1007/s10162-021-00819-x
Paplou, V., Schubert, N. M. A., y Pyott, S. J. (2021). Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Frontiers in Neuroscience, 15, 680856. https://doi.org/10.3389/fnins.2021.680856
Parekh, S., y Kaur, T. (2023). Cochlear inflammaging: Cellular and molecular players of the innate and adaptive immune system in age-related hearing loss. Frontiers in Neurology, 14, 1308823. https://doi.org/10.3389/fneur.2023.1308823
Partearroyo, T., Murillo-Cuesta, S., Vallecillo, N., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Mandruzzato, G., Celaya, A. M., Zeisel, S. H., Pajares, M. A., Varela-Moreiras, G., y Varela-Nieto, I. (2019). Betaine-homocysteine S-methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(5), 5942–5956. https://doi.org/10.1096/fj.201801533R
Perin, P., Marino, F., Varela-Nieto, I., y Szczepek, A. J. (2021). Editorial: Neuroimmunology of the Inner Ear. Frontiers in Neurology, 12. https://www.frontiersin.org/articles/10.3389/fneur.2021.635359
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., y Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Ratnanather, J. T. (2020). Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 12(2), e1469. https://doi.org/10.1002/wsbm.1469
Ren, H., Chen, J., Wang, Y., Zhang, S., y Zhang, B. (2013). Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis. International Journal of Clinical and Experimental Pathology, 6(2), 230–241.
Ren, Y., Hyakusoku, H., Sagers, J. E., Landegger, L. D., Welling, D. B., y Stankovic, K. M. (2020). MMP-14 (MT1-MMP) Is a Biomarker of Surgical Outcome and a Potential Mediator of Hearing Loss in Patients With Vestibular Schwannomas. Frontiers in Cellular Neuroscience, 14, 191. https://doi.org/10.3389/fncel.2020.00191
Riquelme, R., Cediel, R., Contreras, J., la Rosa Lourdes, R., Murillo-Cuesta, S., Hernandez-Sanchez, C., Zubeldia, J. M., Cerdan, S., y Varela-Nieto, I. (2010). A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Frontiers in Neuroanatomy, 4, 27. https://doi.org/10.3389/fnana.2010.00027
Roche, M. V., Yan, D., Guo, Y., Hamad, N., Young, J. I., Blanton, S. H., Gong, F., y Liu, X. Z. (2025). Whole-Genome DNA Methylation Analysis in Age-Related Hearing Loss. Genes, 16(5), 526. https://doi.org/10.3390/genes16050526
Saeed, A., Younis, O., Al-Awamleh, N., Qubbaj, F., Al-Sharif, Z., Sulaiman, S., Al-Taher, M., y Khreesha, L. (2025). ATOH-1 Gene Therapy in Acquired Sensorineural Hearing Loss: A Meta-Analysis and Bioinformatic Analysis of Preclinical Studies. Human Gene Therapy, 36(13–14), 989–1003. https://doi.org/10.1089/hum.2025.013
Sakurai, R., Kim, Y., Nishinakagawa, M., Hinakura, K., Fujiwara, Y., y Ishii, K. (2025). Neural correlates of age-related hearing loss: An MRI and FDG-PET study. Geriatrics & Gerontology International, 25(2), 300–306. https://doi.org/10.1111/ggi.15052
Salata, T. M., Ribeiro, B. N. de F., Muniz, B. C., Antunes, L. de O., Rosas, H. B., y Marchiori, E. (2019). Hearing disorders - findings on computed tomography and magnetic resonance imaging: Pictorial essay. Radiologia Brasileira, 52(1), 54–59. https://doi.org/10.1590/0100-3984.2016.0213
Seicol, B. J., Lin, S., y Xie, R. (2022). Age-Related Hearing Loss Is Accompanied by Chronic Inflammation in the Cochlea and the Cochlear Nucleus. Frontiers in Aging Neuroscience, 14, 846804. https://doi.org/10.3389/fnagi.2022.846804
Shearer, A. E., Hildebrand, M. S., Odell, A. M., y Smith, R. J. (1993). Genetic Hearing Loss Overview. In M. P. Adam, J. Feldman, G. M. Mirzaa, R. A. Pagon, S. E. Wallace, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1434/
Shi, X., Qiu, S., Zhuang, W., Yuan, N., Wang, C., Zhang, S., Sun, T., Guo, W., Gao, F., Yang, S., y Qiao, Y. (2017). NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice. American Journal of Translational Research, 9(12), 5611–5618.
Someya, S., y Prolla, T. A. (2010). Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mechanisms of Ageing and Development, 131(7–8), 480–486. https://doi.org/10.1016/j.mad.2010.04.006
Speck, I., Arndt, S., Thurow, J., Blazhenets, G., Aschendorff, A., Meyer, P. T., y Frings, L. (2020). 18F-FDG PET Imaging of the Inferior Colliculus in Asymmetric Hearing Loss. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(3), 418–422. https://doi.org/10.2967/jnumed.119.231407
Teraoka, M., Hato, N., Inufusa, H., y You, F. (2024). Role of Oxidative Stress in Sensorineural Hearing Loss. International Journal of Molecular Sciences, 25(8). https://doi.org/10.3390/ijms25084146
Todic, J., Guinand, N., Lenoir, V., Senn, P., y Becker, M. (2022). Diagnostic value and prognostic significance of MRI findings in sudden sensorineural hearing loss. Laryngoscope Investigative Otolaryngology, 7(5), 1575–1583. https://doi.org/10.1002/lio2.922
Uraguchi, K., Maeda, Y., Takahara, J., Omichi, R., Fujimoto, S., Kariya, S., Nishizaki, K., y Ando, M. (2021). Upregulation of a nuclear factor-kappa B-interacting immune gene network in mice cochleae with age-related hearing loss. PloS One, 16(10), e0258977. https://doi.org/10.1371/journal.pone.0258977
Verger, A., Roman, S., Chaudat, R.-M., Felician, O., Ceccaldi, M., Didic, M., y Guedj, E. (2017). Changes of metabolism and functional connectivity in late-onset deafness: Evidence from cerebral 18F-FDG-PET. Hearing Research, 353, 8–16. https://doi.org/10.1016/j.heares.2017.07.011
Wang, J., y Puel, J.-L. (2020). Presbycusis: An Update on Cochlear Mechanisms and Therapies. Journal of Clinical Medicine, 9(1), 218. https://doi.org/10.3390/jcm9010218
Wegner, I., van Waes, A. M. A., Bittermann, A. J., Buitinck, S. H., Dekker, C. F., Kurk, S. A., Rados, M., y Grolman, W. (2016). A Systematic Review of the Diagnostic Value of CT Imaging in Diagnosing Otosclerosis. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 37(1), 9–15. https://doi.org/10.1097/MAO.0000000000000924
Wilson, D. M., Cookson, M. R., Van Den Bosch, L., Zetterberg, H., Holtzman, D. M., y Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. Cell, 186(4), 693–714. https://doi.org/10.1016/j.cell.2022.12.032
Yan, T., Weng, F., Ming, Y., Zhu, S., Zhu, M., Wang, C., Guo, C., y Zhu, K. (2024). Luminescence Probes in Bio-Applications: From Principle to Practice. Biosensors, 14(7), 333. https://doi.org/10.3390/bios14070333
Yang, W., Zhao, X., Chai, R., y Fan, J. (2023). Progress on mechanisms of age-related hearing loss. Frontiers in Neuroscience, 17, 1253574. https://doi.org/10.3389/fnins.2023.1253574
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2025 Blanca Cervantes, Pilar López Larrubia, Isabel Varela-Nieto, Silvia Murillo-Cuesta

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Todos los artículos serán publicados bajo la licencia abierta Creative Commons Attribution (CC-BY). Esta licencia permite a otros compartir y adaptar el contenido, incluso con fines comerciales, siempre que se dé el reconocimiento adecuado a los autores y a la revista. Al enviar su manuscrito, los autores retienen los derechos de autor pero otorgan a la revista el derecho a realizar la primera publicación bajo esta licencia.
Más información sobre esta licencia disponible en: https://creativecommons.org/licenses/by/4.0/
Publicaciones 2001-2020
Los textos publicados en esta revista en la seccion de "AUDITIO 2001-2020 están sujetos –si no se indica lo contrario– a una licencia de Reconocimiento 3.0 España de Creative Commons. Puede copiarlos, distribuirlos, comunicarlos públicamente, hacer obras derivadas y usos comerciales siempre que reconozca los créditos de las obras (autoría, nombre de la revista, institución editora) de la manera especificada por los autores o por la revista. La licencia completa se puede consultar en http://creativecommons.org/licenses/by/3.0/es/deed.es.
