Bases moleculares de la sordera: envejecimiento y nuevas fronteras en la investigación auditiva

Authors

  • Blanca Cervantes Escuela de Medicina, Universidad Anáhuac Puebla, México
  • Pilar López Larrubia Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM); Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, España
  • Isabel Varela-Nieto Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM); Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria del Hospital La Paz (IdiPAZ), Madrid, España
  • Silvia Murillo-Cuesta Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM); Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER); Instituto de Investigación Sanitaria del Hospital La Paz (IdiPAZ), Madrid, España https://orcid.org/0000-0002-8706-4327

DOI:

https://doi.org/10.51445/sja.auditio.vol9.2025.123

Keywords:

Presbycusis, Inflammatory response, Redox balance, Exposome

Abstract

Age-related hearing loss, or presbycusis, is one of the most prevalent causes of sensory impairment in the world. This condition, which is multifactorial in nature, is influenced by genetic, environmental, physiological and lifestyle factors. In recent years, its relationship with cognitive impairment and neurodegenerative diseases has aroused great interest among researchers and health professionals. In this contribution, the molecular mechanisms involved in age-related auditory degeneration are reviewed, with special emphasis on the role of oxidative stress, neuroinflammation, as well as genetic mutations that are associated with increased susceptibility to presbycusis, both in animal models and in epidemiological and clinical trials. It also discusses diagnostic imaging techniques and emerging therapeutic perspectives that could transform the clinical approach to deafness in the near future.

Downloads

Download data is not yet available.

        Visibility and Altmetrics

Global Statistics ℹ️

Cumulative totals since publication
4
Views
0
Downloads
4
Total
Downloads by format:
PDF (Español (España)) 0 Texto (Español (España)) 0 XML (Español (España)) 0 ePUB (Español (España)) 0 Material Suplementario (Español (España)) 0

References

Akil, O., Seal, R. P., Burke, K., Wang, C., Alemi, A., During, M., Edwards, R. H., y Lustig, L. R. (2012). Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron, 75(2), 283-93. https://doi.org/10.1016/j.neuron.2012.05.019

Al-Moyed, H., Cepeda, A. P., Jung, S., Moser, T., Kügler, S., y Reisinger, E. (2019). A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Molecular Medicine, 11(1), e9396. https://doi.org/10.15252/emmm.201809396

Asli, R. H., Akbarpour, M., Lahiji, M. R., Leyli, E. K., Pastadast, M., Ramezani, H., y Nemati, S. (2023). Evaluation of the relationship between prestin serum biomarker and sensorineural hearing loss: A case-control study. European Archives of Oto-Rhino-Laryngology: Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): Affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery, 280(3), 1147–1153. https://doi.org/10.1007/s00405-022-07586-2

Baumgartner, L. S., Moore, E., Shook, D., Messina, S., Day, M. C., Green, J., Nandy, R., Seidman, M., y Baumgartner, J. E. (2018). Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. Journal of Audiology & Otology, 22(4), 209–222. https://doi.org/10.7874/jao.2018.00115

Benkafadar, N., François, F., Affortit, C., Casas, F., Ceccato, J.-C., Menardo, J., Venail, F., Malfroy-Camine, B., Puel, J.-L., y Wang, J. (2019). ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Molecular Neurobiology, 56(8), 5950–5969. https://doi.org/10.1007/s12035-019-1493-6

Bermúdez-Muñoz, J. M., Celaya, A. M., García-Mato, Á., Muñoz-Espín, D., Rodríguez-de la Rosa, L., Serrano, M., y Varela-Nieto, I. (2021). Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel, Switzerland), 10(9), 1351. https://doi.org/10.3390/antiox10091351

Bermúdez-Muñoz, J. M., Celaya, A. M., Hijazo-Pechero, S., Wang, J., Serrano, M., y Varela-Nieto, I. (2020). G6PD overexpression protects from oxidative stress and age-related hearing loss. Aging Cell, 19(12), e13275. https://doi.org/10.1111/acel.13275

Bouzid, A., Smeti, I., Chakroun, A., Loukil, S., Gibriel, A. A., Grati, M., Ghorbel, A., y Masmoudi, S. (2018). CDH23 Methylation Status and Presbycusis Risk in Elderly Women. Frontiers in Aging Neuroscience, 10, 241. https://doi.org/10.3389/fnagi.2018.00241

Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., y Sheu, S.-S. (2004). Calcium, ATP, and ROS: A mitochondrial love-hate triangle. American Journal of Physiology. Cell Physiology, 287(4), C817-833. https://doi.org/10.1152/ajpcell.00139.2004

Buschle, M., Hamerschmidt, R., Matias, J. E. F., Zanini, O. P. L., Coelho, L. O. de M., y Polanski, J. F. (2024). The Role of Computed Tomography in the Diagnosis of Congenital Sensorineural Hearing Loss. International Archives of Otorhinolaryngology, 28(3), e387–e393. https://doi.org/10.1055/s-0044-1786827

Celaya, A. M., Rodríguez-de la Rosa, L., Bermúdez-Muñoz, J. M., Zubeldia, J. M., Romá-Mateo, C., Avendaño, C., Pallardó, F. V., y Varela-Nieto, I. (2021). IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells, 10(7), 1686. https://doi.org/10.3390/cells10071686

Celaya, A. M., Sánchez-Pérez, I., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Pintado-Berninches, L., Perona, R., Murillo-Cuesta, S., y Varela-Nieto, I. (2019). Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. ELife, 8. https://doi.org/10.7554/eLife.39159

Cervantes, B., Arana, L., Murillo-Cuesta, S., Bruno, M., Alkorta, I., y Varela-Nieto, I. (2019). Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. Journal of Clinical Medicine, 8(9). https://doi.org/10.3390/jcm8091464

Chadha, S., Kamenov, K., y Cieza, A. (2021). The world report on hearing, 2021. Bulletin of the World Health Organization, 99(4), 242-242A. https://doi.org/10.2471/BLT.21.285643

Chen, Y.-C., Chen, H., Jiang, L., Bo, F., Xu, J.-J., Mao, C.-N., Salvi, R., Yin, X., Lu, G., y Gu, J.-P. (2018). Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI. Frontiers in Behavioral Neuroscience, 12, 44. https://doi.org/10.3389/fnbeh.2018.00044

Ciorba, A., Hatzopoulos, S., Bianchini, C., Aimoni, C., Skarzynski, H., y Skarzynski, P. (2015). Genetics of presbycusis and presbystasis. International Journal of Immunopathology and Pharmacology, 28(1), 29–35. https://doi.org/10.1177/0394632015570819

Conte, G., Di Berardino, F., Sina, C., Zanetti, D., Scola, E., Gavagna, C., Gaini, L., Palumbo, G., Capaccio, P., y Triulzi, F. (2017). MR Imaging in Sudden Sensorineural Hearing Loss. Time to Talk. AJNR. American Journal of Neuroradiology, 38(8), 1475–1479. https://doi.org/10.3174/ajnr.A5230

Cruickshanks, K. J., Nondahl, D. M., Tweed, T. S., Wiley, T. L., Klein, B. E. K., Klein, R., Chappell, R., Dalton, D. S., y Nash, S. D. (2010). Education, occupation, noise exposure history and the 10-yr cumulative incidence of hearing impairment in older adults. Hearing Research, 264(1–2), 3–9. https://doi.org/10.1016/j.heares.2009.10.008

Dawes, P., Cruickshanks, K. J., Moore, D. R., Edmondson-Jones, M., McCormack, A., Fortnum, H., y Munro, K. J. (2014). Cigarette smoking, passive smoking, alcohol consumption, and hearing loss. Journal of the Association for Research in Otolaryngology: JARO, 15(4), 663–674. https://doi.org/10.1007/s10162-014-0461-0

El-Sharkawy, L. Y., Brough, D., y Freeman, S. (2020). Inhibiting the NLRP3 Inflammasome. Molecules (Basel, Switzerland), 25(23), 5533. https://doi.org/10.3390/molecules25235533

Espino Guarch, M., Font-Llitjós, M., Murillo-Cuesta, S., Errasti-Murugarren, E., Celaya, A. M., Girotto, G., Vuckovic, D., Mezzavilla, M., Vilches, C., Bodoy, S., Sahún, I., González, L., Prat, E., Zorzano, A., Dierssen, M., Varela-Nieto, I., Gasparini, P., Palacín, M., y Nunes, V. (2018). Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. ELife, 7, e31511. https://doi.org/10.7554/eLife.31511

Fetoni, A. R., Picciotti, P. M., Paludetti, G., y Troiani, D. (2011). Pathogenesis of presbycusis in animal models: A review. Experimental Gerontology, 46(6), 413–425. https://doi.org/10.1016/j.exger.2010.12.003

Fu, X., Sun, X., Zhang, L., Jin, Y., Chai, R., Yang, L., Zhang, A., Liu, X., Bai, X., Li, J., Wang, H., y Gao, J. (2018). Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. The Journal of Clinical Investigation, 128(11), 4938–4955. https://doi.org/10.1172/JCI98058

Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W.-H., Pan, B., Hu, Y.-J., Hu, J. H., Thompson, D. B., Shu, Y., Li, Y., Wang, H., Yang, S., Xu, Q., Polley, D. B., Liberman, M. C., Kong, W.-J., Holt, J. R., Chen, Z.-Y., y Liu, D. R. (2018). Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 553(7687), 217–221. https://doi.org/10.1038/nature25164

Gates, G. A., y Mills, J. H. (2005). Presbycusis. Lancet (London, England), 366(9491), 1111–1120. https://doi.org/10.1016/S0140-6736(05)67423-5

Gregory, G. E., Munro, K. J., Couper, K. N., Pathmanaban, O. N., y Brough, D. (2023). The NLRP3 inflammasome as a target for sensorineural hearing loss. Clinical Immunology (Orlando, Fla.), 249, 109287. https://doi.org/10.1016/j.clim.2023.109287

Han, C., Linser, P., Park, H.-J., Kim, M.-J., White, K., Vann, J. M., Ding, D., Prolla, T. A., y Someya, S. (2016). Sirt1 deficiency protects cochlear cells and delays the early onset of age-related hearing loss in C57BL/6 mice. Neurobiology of Aging, 43, 58–71. https://doi.org/10.1016/j.neurobiolaging.2016.03.023

Han, H. H., Ge, P.-X., Li, W.-J., Hu, X.-L., y He, X.-P. (2025). Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO-). Sensors (Basel, Switzerland), 25(10), 3018. https://doi.org/10.3390/s25103018

Izumikawa, M., Minoda, R., Kawamoto, K., Abrashkin, K. A., Swiderski, D. L., Dolan, D. F., Brough, D. E., y Raphael, Y. (2005). Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nature Medicine, 11(3), 271–276. https://doi.org/10.1038/nm1193

Jafari, Z., Copps, T., Hole, G., Kolb, B. E., y Mohajerani, M. H. (2020). Noise Damage Accelerates Auditory Aging and Tinnitus: A Canadian Population-Based Study. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 41(10), 1316–1326. https://doi.org/10.1097/MAO.0000000000002848

Keithley, E. M. (2020). Pathology and mechanisms of cochlear aging. Journal of Neuroscience Research, 98(9), 1674–1684. https://doi.org/10.1002/jnr.24439

Kohrman, D. C., Wan, G., Cassinotti, L., y Corfas, G. (2020). Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harbor Perspectives in Medicine, 10(1), a035493. https://doi.org/10.1101/cshperspect.a035493

Le Prell, C. G., Yamashita, D., Minami, S. B., Yamasoba, T., y Miller, J. M. (2007). Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hearing Research, 226(1–2), 22–43. https://doi.org/10.1016/j.heares.2006.10.006

Li, H., Liu, H., y Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 9(10), 1293–1299. https://doi.org/10.1038/nm925

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England), 396(10248), 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., y Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001

Lv, J., Wang, H., Cheng, X., Chen, Y., Wang, D., Zhang, L., Cao, Q., Tang, H., Hu, S., Gao, K., Xun, M., Wang, J., Wang, Z., Zhu, B., Cui, C., Gao, Z., Guo, L., Yu, S., Jiang, L., … Shu, Y. (2024). AAV1-hOTOF gene therapy for autosomal recessive deafness 9: A single-arm trial. Lancet (London, England), 403(10441), 2317–2325. https://doi.org/10.1016/S0140-6736(23)02874-X

Martínez-Vega, R., Garrido, F., Partearroyo, T., Cediel, R., Zeisel, S. H., Martínez-Álvarez, C., Varela-Moreiras, G., Varela-Nieto, I., y Pajares, M. A. (2015). Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(2), 418–432. https://doi.org/10.1096/fj.14-259283

Martínez-Vega, R., Partearroyo, T., Vallecillo, N., Varela-Moreiras, G., Pajares, M. A., y Varela-Nieto, I. (2015). Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. The Journal of Nutritional Biochemistry, 26(12), 1424–1433. https://doi.org/10.1016/j.jnutbio.2015.07.011

Martinon, F. (2010). Signaling by ROS drives inflammasome activation. European Journal of Immunology, 40(3), 616–619. https://doi.org/10.1002/eji.200940168

Menardo, J., Tang, Y., Ladrech, S., Lenoir, M., Casas, F., Michel, C., Bourien, J., Ruel, J., Rebillard, G., Maurice, T., Puel, J.-L., y Wang, J. (2012). Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxidants & Redox Signaling, 16(3), 263–274. https://doi.org/10.1089/ars.2011.4037

Mianné, J., Chessum, L., Kumar, S., Aguilar, C., Codner, G., Hutchison, M., Parker, A., Mallon, A.-M., Wells, S., Simon, M. M., Teboul, L., Brown, S. D. M., y Bowl, M. R. (2016). Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Medicine, 8(1), 16. https://doi.org/10.1186/s13073-016-0273-4

Murillo-Cuesta, S., Celaya, A. M., Cervantes, B., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Contreras, J., Sánchez-Pérez, I., y Varela-Nieto, I. (2021). Therapeutic efficiency of the APAF-1 antagonist LPT99 in a rat model of cisplatin-induced hearing loss. Clinical and Translational Medicine, 11(4), e363. https://doi.org/10.1002/ctm2.363

Murillo-Cuesta, S., Contreras, J., Zurita, E., Cediel, R., Cantero, M., Varela-Nieto, I., y Montoliu, L. (2010). Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell & Melanoma Research, 23(1), 72–83. https://doi.org/10.1111/j.1755-148X.2009.00646.x

Murillo-Cuesta, S., Lara, E., Bermúdez-Muñoz, J. M., Torres-Campos, E., Rodríguez-de la Rosa, L., López-Larrubia, P., Erickson, S. R., & Varela-Nieto, I. (2023). Protection of lipopolysaccharide-induced otic injury by a single dose administration of a novel dexamethasone formulation. Translational Medicine Communications, 8(1), 23. https://doi.org/10.1186/s41231-023-00156-6

Noble, K., Brown, L., Elvis, P., y Lang, H. (2022). Cochlear Immune Response in Presbyacusis: A Focus on Dysregulation of Macrophage Activity. Journal of the Association for Research in Otolaryngology: JARO, 23(1), 1–16. https://doi.org/10.1007/s10162-021-00819-x

Paplou, V., Schubert, N. M. A., y Pyott, S. J. (2021). Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Frontiers in Neuroscience, 15, 680856. https://doi.org/10.3389/fnins.2021.680856

Parekh, S., y Kaur, T. (2023). Cochlear inflammaging: Cellular and molecular players of the innate and adaptive immune system in age-related hearing loss. Frontiers in Neurology, 14, 1308823. https://doi.org/10.3389/fneur.2023.1308823

Partearroyo, T., Murillo-Cuesta, S., Vallecillo, N., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Mandruzzato, G., Celaya, A. M., Zeisel, S. H., Pajares, M. A., Varela-Moreiras, G., y Varela-Nieto, I. (2019). Betaine-homocysteine S-methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(5), 5942–5956. https://doi.org/10.1096/fj.201801533R

Perin, P., Marino, F., Varela-Nieto, I., y Szczepek, A. J. (2021). Editorial: Neuroimmunology of the Inner Ear. Frontiers in Neurology, 12. https://www.frontiersin.org/articles/10.3389/fneur.2021.635359

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., y Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Ratnanather, J. T. (2020). Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 12(2), e1469. https://doi.org/10.1002/wsbm.1469

Ren, H., Chen, J., Wang, Y., Zhang, S., y Zhang, B. (2013). Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis. International Journal of Clinical and Experimental Pathology, 6(2), 230–241.

Ren, Y., Hyakusoku, H., Sagers, J. E., Landegger, L. D., Welling, D. B., y Stankovic, K. M. (2020). MMP-14 (MT1-MMP) Is a Biomarker of Surgical Outcome and a Potential Mediator of Hearing Loss in Patients With Vestibular Schwannomas. Frontiers in Cellular Neuroscience, 14, 191. https://doi.org/10.3389/fncel.2020.00191

Riquelme, R., Cediel, R., Contreras, J., la Rosa Lourdes, R., Murillo-Cuesta, S., Hernandez-Sanchez, C., Zubeldia, J. M., Cerdan, S., y Varela-Nieto, I. (2010). A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Frontiers in Neuroanatomy, 4, 27. https://doi.org/10.3389/fnana.2010.00027

Roche, M. V., Yan, D., Guo, Y., Hamad, N., Young, J. I., Blanton, S. H., Gong, F., y Liu, X. Z. (2025). Whole-Genome DNA Methylation Analysis in Age-Related Hearing Loss. Genes, 16(5), 526. https://doi.org/10.3390/genes16050526

Saeed, A., Younis, O., Al-Awamleh, N., Qubbaj, F., Al-Sharif, Z., Sulaiman, S., Al-Taher, M., y Khreesha, L. (2025). ATOH-1 Gene Therapy in Acquired Sensorineural Hearing Loss: A Meta-Analysis and Bioinformatic Analysis of Preclinical Studies. Human Gene Therapy, 36(13–14), 989–1003. https://doi.org/10.1089/hum.2025.013

Sakurai, R., Kim, Y., Nishinakagawa, M., Hinakura, K., Fujiwara, Y., y Ishii, K. (2025). Neural correlates of age-related hearing loss: An MRI and FDG-PET study. Geriatrics & Gerontology International, 25(2), 300–306. https://doi.org/10.1111/ggi.15052

Salata, T. M., Ribeiro, B. N. de F., Muniz, B. C., Antunes, L. de O., Rosas, H. B., y Marchiori, E. (2019). Hearing disorders - findings on computed tomography and magnetic resonance imaging: Pictorial essay. Radiologia Brasileira, 52(1), 54–59. https://doi.org/10.1590/0100-3984.2016.0213

Seicol, B. J., Lin, S., y Xie, R. (2022). Age-Related Hearing Loss Is Accompanied by Chronic Inflammation in the Cochlea and the Cochlear Nucleus. Frontiers in Aging Neuroscience, 14, 846804. https://doi.org/10.3389/fnagi.2022.846804

Shearer, A. E., Hildebrand, M. S., Odell, A. M., y Smith, R. J. (1993). Genetic Hearing Loss Overview. In M. P. Adam, J. Feldman, G. M. Mirzaa, R. A. Pagon, S. E. Wallace, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1434/

Shi, X., Qiu, S., Zhuang, W., Yuan, N., Wang, C., Zhang, S., Sun, T., Guo, W., Gao, F., Yang, S., y Qiao, Y. (2017). NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice. American Journal of Translational Research, 9(12), 5611–5618.

Someya, S., y Prolla, T. A. (2010). Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mechanisms of Ageing and Development, 131(7–8), 480–486. https://doi.org/10.1016/j.mad.2010.04.006

Speck, I., Arndt, S., Thurow, J., Blazhenets, G., Aschendorff, A., Meyer, P. T., y Frings, L. (2020). 18F-FDG PET Imaging of the Inferior Colliculus in Asymmetric Hearing Loss. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(3), 418–422. https://doi.org/10.2967/jnumed.119.231407

Teraoka, M., Hato, N., Inufusa, H., y You, F. (2024). Role of Oxidative Stress in Sensorineural Hearing Loss. International Journal of Molecular Sciences, 25(8). https://doi.org/10.3390/ijms25084146

Todic, J., Guinand, N., Lenoir, V., Senn, P., y Becker, M. (2022). Diagnostic value and prognostic significance of MRI findings in sudden sensorineural hearing loss. Laryngoscope Investigative Otolaryngology, 7(5), 1575–1583. https://doi.org/10.1002/lio2.922

Uraguchi, K., Maeda, Y., Takahara, J., Omichi, R., Fujimoto, S., Kariya, S., Nishizaki, K., y Ando, M. (2021). Upregulation of a nuclear factor-kappa B-interacting immune gene network in mice cochleae with age-related hearing loss. PloS One, 16(10), e0258977. https://doi.org/10.1371/journal.pone.0258977

Verger, A., Roman, S., Chaudat, R.-M., Felician, O., Ceccaldi, M., Didic, M., y Guedj, E. (2017). Changes of metabolism and functional connectivity in late-onset deafness: Evidence from cerebral 18F-FDG-PET. Hearing Research, 353, 8–16. https://doi.org/10.1016/j.heares.2017.07.011

Wang, J., y Puel, J.-L. (2020). Presbycusis: An Update on Cochlear Mechanisms and Therapies. Journal of Clinical Medicine, 9(1), 218. https://doi.org/10.3390/jcm9010218

Wegner, I., van Waes, A. M. A., Bittermann, A. J., Buitinck, S. H., Dekker, C. F., Kurk, S. A., Rados, M., y Grolman, W. (2016). A Systematic Review of the Diagnostic Value of CT Imaging in Diagnosing Otosclerosis. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 37(1), 9–15. https://doi.org/10.1097/MAO.0000000000000924

Wilson, D. M., Cookson, M. R., Van Den Bosch, L., Zetterberg, H., Holtzman, D. M., y Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. Cell, 186(4), 693–714. https://doi.org/10.1016/j.cell.2022.12.032

Yan, T., Weng, F., Ming, Y., Zhu, S., Zhu, M., Wang, C., Guo, C., y Zhu, K. (2024). Luminescence Probes in Bio-Applications: From Principle to Practice. Biosensors, 14(7), 333. https://doi.org/10.3390/bios14070333

Yang, W., Zhao, X., Chai, R., y Fan, J. (2023). Progress on mechanisms of age-related hearing loss. Frontiers in Neuroscience, 17, 1253574. https://doi.org/10.3389/fnins.2023.1253574

Portadilla Auditio e123

Published

2025-12-30

How to Cite

Cervantes, B., López Larrubia, P., Varela-Nieto, I., & Murillo-Cuesta, S. (2025). Bases moleculares de la sordera: envejecimiento y nuevas fronteras en la investigación auditiva. Auditio , 9. https://doi.org/10.51445/sja.auditio.vol9.2025.123

Issue

Section

Research Articles

Categories

Most read articles by the same author(s)