Hearing aid or cochlear implant? A reasoned approach to deciding when to prescribe a cochlear implant

Authors

DOI:

https://doi.org/10.51445/sja.auditio.vol9.2025.120

Keywords:

Hearing loss, cochlear implant, hearing aid, indications

Abstract

Cochlear implants (CIs) were approved as a treatment for profound hearing loss in 1985 in the United States and in 1995 in Spain. Since then, CI indication criteria have evolved in parallel with scientific and technological advances in these devices. Currently, people with severe bilateral hearing loss (≥70 dB HL) are candidates for CIs in most countries. The objective of this study is to investigate whether borderline patients who do not reach severe hearing loss could perform better with CIs than with hearing aids. The scientific evidence analyzed shows that patients with average audiometric thresholds (0.5-2 kHz) of 65 dB HL have an 80% probability of performing better with a CI than with one or two hearing aids. The evidence also shows that monosyllabic word recognition is more sensitive for detecting CI candidates than sentence recognition. Individuals with preoperative word recognition scores below 60% in the best aided condition will perform better with a CI and a contralateral hearing aid than with two hearing aids. Implantation reduces the emotional and social impact of hearing loss and improves the quality of life of these individuals. Our conclusions are consistent with recent studies and international reports suggesting that practitioners should consider referring patients for CI candidacy evaluation when they have audiometric thresholds >60–65 dB HL and word recognition scores <60% in the best aided condition.

Downloads

Download data is not yet available.

        Visibility and Altmetrics

Global Statistics ℹ️

Cumulative totals since publication
2
Views
0
Downloads
2
Total
Downloads by format:
PDF (Español (España)) 0 Texto (Español (España)) 0 XML (Español (España)) 0 EPUB (Español (España)) 0

References

Alkaf, F. M., y Firszt, J. B. (2007). Speech recognition in quiet and noise in borderline cochlear implant candidates. J Am Acad Audiol, 18(10), 872-82. https://doi.org/10.3766/jaaa.18.10.6

American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) (2021). Position statement: Pediatric cochlear implantation candidacy. https://www.entnet.org/resource/position-statement-pediatric-cochlear-implantation-candidacy/

Amoodi, H. A., Mick, P. T., Shipp, D. B., Friesen, L. M., Nedzelski, J. M., Chen, J. M., y Lin, V. Y. (2012). Results with cochlear implantation in adults with speech recognition scores exceeding current criteria. Otol Neurotol, 33(1), 6-12. https://doi.org/10.1097/MAO.0b013e318239e5a1

Archbold, S., Lutman, M. E., y Marshall, D. H. (1995). Categories of Auditory Performance. Ann Otol Rhinol Laryngol 166, 312-314.

Benifla, M., Martelli, N., Brenet, E., Compagnon, C., Dubernard, X., y Labrousse, M. (2024). Costs analysis of cochlear implantation in children. European Annals of Otorhinolaryngology, Head and Neck Diseases, 141(4), 209-213. https://doi.org/10.1016/j.anorl.2024.02.012

Beraza-Tamayo, N., Cenjor-Español, C., Gómez-Pajuelo, P., Jáudenes-Casaubón, C., Manrique, M., Nuñez, F., de-Raeve, L., Ramos, A., y Zamora, J. (2023). Libro blanco sobre implantes cocleares en adultos y ancianos. GAES

Bernstein, J. G. W., Pillion, E. M., y Tolisano, A. M. (2025). Clinical Outcomes for Adult Single-Sided Deafness Cochlear. Implantees Exceeding the 5% Candidacy Criterion. Ear Hear, 46(2), 336-346. https://doi.org/10.1097/AUD.0000000000001578

British Deaf Association (2015). Fast facts about the Deaf community. https://bda.org.uk/fast-facts-about-the-deaf-community/

Byrne, D., Dillon, H., Ching, T., Katsch, R., y Keidser, G. (2001). NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures. J Am Acad Audiol, 12(1), 37-51.

Cárdenas, M., y Marrero, V. (1994). Cuaderno de logoaudiometría. Universidad Nacional de Educación a Distancia.

Carlson, M. L., Sladen, D. P., Gurgel, R. K., Tombers, N. M., Lohse, C. M., y Driscoll, C. L. (2018). Survey of the American Neurotology Society on Cochlear Implantation: Part 1, Candidacy Assessment and Expanding Indications. Otol Neurotol, 39(1), e12-e19. https://doi.org/10.1097/MAO.0000000000001632

Carlson, M. L., Sladen, D. P., Haynes, D. S., Driscoll, C. L., DeJong, M. D., Erickson, H. C., Sunderhaus, L. W., Hedley-Williams, A., Rosenzweig, E. A., Davis, T. J., y Gifford, R. H. (2015). Evidence for the expansion of pediatric cochlear implant candidacy. Otol Neurotol, 36(1), 43-50. https://doi.org/10.1097/MAO.0000000000000607

Carlyon, R. P., y Goehring, T. (2021). Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol, 22(5), 481-508. https://doi.org/10.1007/s10162-021-00811-5

Cox, R. M., y Alexander, G. C. (1995). The abbreviated profile of hearing aid benefit. Ear Hear, 16(2), 176-86. https://doi.org/10.1097/00003446-199504000-00005

Davies-Venn, E., Souza, P., Brennan, M., y Stecker, G. C. (2009). Effects of audibility and multichannel wide dynamic range compression on consonant recognition for listeners with severe hearing loss. Ear Hear, 30(5), 494-504. https://doi.org/10.1097/AUD.0b013e3181aec5bc

Dorman, M. F., Loizou, P. C., Kemp, L. L., y Kirk, K. I. (2000). Word recognition by children listening to speech processed into a small number of channels: data from normal-hearing children and children with cochlear implants. Ear Hear, 21(6), 590-596. https://doi.org/10.1097/00003446-200012000-00006

Dunn, C. C., Zwolan, T. A., Balkany, T. J., Strader, H. L., Biever, A., Gifford, R. H., Hall, M. W., Holcomb, M. A., Hill, H., King, E. R., Larky, J., Presley, R., Reed, M., Shapiro, W. H., Sydlowski, S. A., Wolfe, J. (2024). A Consensus to Revise the Minimum Speech Test Battery-Version 3. Am J Audiol, 33(3), 624-647. https://doi.org/10.1044/2024_AJA-24-00008.

Firszt, J. B., Holden, L. K., Skinner, M. W., Tobey, E. A., Peterson, A., Gaggl, W., Runge-Samuelson, C. L., y Wackym, P. A. (2004). Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear, 25(4), 375-87. doi: https://doi.org/10.1097/01.aud.0000134552.22205.ee

Food and Drug Administration (FDA). (2024). Summary of safety and effectiveness data: Premarket Approval Application (PMA) Number: P000025/S129. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=P000025S129

Gatto, A., Tofanelli, M., Valentinuz, G., Mascherin, A., Costariol, L., Rizzo, S., Borsetto, D., Boscolo-Rizzo, P., y Tirelli, G. (2024). Cochlear implant cost analysis in adults: a European narrative review. Eur Arch Otorhinolaryngol, 281(9), 4455-4471. https://doi.org/10.1007/s00405-024-08591-3

Gifford, R. H., Dorman, M. F., Shallop, J. K., y Sydlowski, S. A. (2010). Evidence for the expansion of adult cochlear implant candidacy. Ear Hear, 31(2), 186-94. https://doi.org/10.1097/AUD.0b013e3181c6b831

Gifford, R. H., Shallop, J. K., y Peterson, A. M. (2008). Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiol Neurootol, 13(3), 193-205. https://doi.org/10.1159/000113510

Hainarosie, M., Zainea, V., y Hainarosie, R. (2014). The evolution of cochlear implant technology and its clinical relevance. J Med Life, 7(Spec Iss 2), 1-4.

Johannesen, P. T., Pérez-González, P., y Lopez-Poveda, E. A. (2014). Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. Front Neurosci., 8 214. https://doi.org/10.3389/fnins.2014.00214

Jorgensen, L. E., Benson, E. A., y McCreery, R. W. (2018). Conventional Amplification for Children and Adults with Severe-to-Profound Hearing Loss. Semin Hear, 39(4), 364-376. https://doi.org/10.1055/s-0038-1670699

Kirk, K. I., Pisoni, D. B., y Osberger, M. J. (1995). Lexical effects on spoken word recognition by pediatric cochlear implant users. Ear Hear, 16(5):470-81. https://doi.org/10.1097/00003446-199510000-00004

Leigh, J. R., Dettman, S. J., y Dowell, R. C. (2016). Evidence-based guidelines for recommending cochlear implantation for young children: Audiological criteria and optimizing age at implantation. Int J Audiol, 55(Suppl 2), S9-S18. https://doi.org/10.3109/14992027.2016.1157268

Leigh-Hunt, N., Bagguley, D., Bash, K., Turner, V., Turnbull, S., Valtorta, N., y Caan, W. (2017). An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health 152, 157-171. https://doi.org/10.1016/j.puhe.2017.07.035

Livingston, G., Huntley, J., Liu, K. Y., Costafreda, S. G., Selbæk, G., Alladi, S., Ames, D., Banerjee, S., Burns, A., Brayne, C., Fox, N. C., Ferri, C. P., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Nakasujja, N., Rockwood, K., …, y Mukadam, N. (2024). Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. The Lancet, 404(10452), 572–628. https://doi.org/10.1016/S0140-6736(24)01296-0

Lopez-Poveda, E. A., Eustaquio-Martín, A., Fumero, M. J., Gorospe, J. M., Polo López, R., Gutiérrez Revilla, M. A., Schatzer, R., Nopp, P., y Stohl, J. S. (2020). Speech-in-noise recognition with more realistic implementations of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Ear and Hearing, 41(6), 1492-1510. https://doi.org/10.1097/AUD.0000000000000880

Lopez-Poveda, E. A., Eustaquio-Martin, A., Stohl, J. S., Wolford, R. D., Schatzer, R., Gorospe, J. M., Santa Cruz Ruiz, S., Benito, F., y Wilson, B. S. (2017). Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Hearing Research, 348, 134-137. https://doi.org/10.1016/j.heares.2017.02.003

Lopez-Poveda, E. A., Eustaquio-Martin, A., Stohl, J. S., Wolford, R. D., Schatzer, R., y Wilson, B. S. (2016). A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing, 37(3), e138-e148. https://doi.org/10.1097/AUD.0000000000000273

Lopez-Poveda, E. A., Johannesen, P. T., Pérez-González, P., Blanco, J. L., Kalluri, S., y Edwards, B. (2017). Predictors of hearing aid outcomes. Trends Hear, 21, 1-28. https://doi.org/10.1177/2331216517730526.

Manrique, M., Ramos, Á., de Paula Vernetta, C., Gil-Carcedo, E., Lassaletta, L., Sanchez-Cuadrado, I., Espinosa, J. M., Batuecas, Á., Cenjor, C., Lavilla, M. J., Núñez, F., Cavalle, L., y Huarte, A. (2017). Guía clínica sobre implantes cocleares. Acta Otorrinolaringol Esp, 70(1), 47-54. https://doi.org/10.1016/j.otorri.2017.10.007.

Mudery, J. A., Francis, R., McCrary, H., y Jacob, A. (2016). Older Individuals Meeting Medicare Cochlear Implant Candidacy Criteria in Noise but Not in Quiet: Are These Patients Improved by Surgery? Otol Neurotol, 38(2), 187-191. https://doi.org/10.1097/MAO.0000000000001271

National Institute for Health and Care Excellence (NICE) (2019). Cochlear implants for children and adults with severe to profound deafness (TA566). www.nice.org.uk/guidance/ta566

Neve, O. M., Boerman, J. A., van den Hout, W. B., Briaire, J. J., van Benthem, P. P. G., y Frijns, J. H. M. (2021). Cost-benefit Analysis of Cochlear Implants: A Societal Perspective. Ear Hear, 42(5), 1338-1350. https://doi.org/10.1097/AUD.0000000000001021

Newman, C. W., Weinstein, B. E., Jacobson, G. P., y Hug, G. A. (1991). Test-retest reliability of the Hearing Handicap Inventory for Adults. Ear Hear, 12, 355–357. https://doi.org/10.1097/00003446-199110000-00009

Nilsson, M., Soli, S. D., y Sullivan, J. A. (1994). Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. J Acoust Soc Am, 95(2), 1085-99. https://doi.org/10.1121/1.408469

Organización mundial de la salud (OMS) (2021). World report on hearing. https://www.who.int/publications/i/item/9789240020481

Organización mundial de la salud (OMS) (2025). Sordera y pérdida de la audición. https://www.who.int/es/news-room/fact-sheets/detail/deafness-and-hearing-loss

Park, L. R., Gagnon, E. B., y Brown, K. D. (2021). The Limitations of FDA Criteria: Inconsistencies with Clinical Practice, Findings, and Adult Criteria as a Barrier to Pediatric Implantation. Semin Hear, 42(4), 373-380. https://doi.org/10.1055/s-0041-1739370

Perkins, E., Dietrich, M. S., Manzoor, N., O’Malley, M., Bennett, M., Rivas, A., Haynes, D., Labadie, R., y Gifford, R. (2021). Further Evidence for the Expansion of Adult Cochlear Implant Candidacy Criteria. Otol Neurotol, 42(6), 815-823. https://doi.org/10.1097/MAO.0000000000003068

Peters, R. W., Moore, B. C., y Baer, T. (1998). Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people. J Acoust Soc Am, 103(1), 577-587. https://doi.org/10.1121/1.421128

Peterson, G. E., y Lehiste, I. (1962). Revised CNC lists for auditory tests. J Speech Hear Disord, 27, 62-70. https://doi.org/10.1044/jshd.2701.62

Quatre, R., Fabre, C., Aubry, K., Bordure, P., Bozorg-Grayeli, A., Deguine, O., Eyermann, C., Franco-Vidal, V., Godey, B., Guevara. N., Karkas, A., Klopp, N., Labrousse, M., Lebreton, J. P., Lerosey, Y., Lescanne, E., Loundon, N., Marianowski, R., …, y Schmerber, S. (2020). The French Cochlear Implant Registry (EPIIC): Cochlear implant candidacy assessment of off-label indications. Eur Ann Otorhinolaryngol Head Neck Dis, 137(Suppl 1), S27-S35. https://doi.org/10.1016/j.anorl.2020.07.012

Rivas, A., Perkins, E., Rivas, A., Rincon, L. A., Litvak, L., Spahr, T., Dorman, M., Kessler, D., y Gifford, R. (2021). Development and Validation of the Spanish AzBio Sentence Corpus. Otol Neurotol, 42(1), 154-158. https://doi.org/10.1097/mao.0000000000002970

Rodríguez-Ferreiro, M., y Serra, V. (2024). Pruebas de habla en ruido: una revisión de las pruebas disponibles en español. Auditio, 8, e113. https://doi.org/10.51445/sja.auditio.vol8.2024.113

Shukla, A., Harper, M., Pedersen, E., Goman, A., Suen, J. J., Price, C., Applebaum, J., Hoyer, M., Lin, F. R., y Reed, N. S. (2020). Hearing loss, loneliness, and social isolation: a systematic review. Otolaryngol Head Neck Surg 162, 622-633. https://doi.org/10.1177/0194599820910377

Souza, P. E., Boike, K. T., Witherell, K., y Tremblay, K. (2007). Prediction of speech recognition from audibility in older listeners with hearing loss: effects of age, amplification, and background noise. J Am Acad Audiol, 18(1), 54-65. https://doi.org/10.3766/jaaa.18.1.5

Summers, V., Makashay, M. J., Theodoroff, S. M., y Leek, M. R. (2013). Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners. J Am Acad Audiol 24(4), 274-92. https://doi.org/10.3766/jaaa.24.4.4

Velandia, S. L., Prentiss, S. M., Martinez, D. M., Sanchez, C. M., Laffitte-Lopez, D., y Snapp, H. A. (2024). Classification performance of Spanish and English word recognition testing to identify cochlear implant candidates. Int J Audiolec, 1-7. https://doi.org/10.1080/14992027.2024.2427854

Weisleder, P., y Hodgson, W. R. (1989). Evaluation of four Spanish word-recognition-ability lists. Ear Hear 10(6), 387-92. https://doi.org/10.1097/00003446-198912000-00012

Zhang, Y., Johannesen, P. T., Molaee-Ardekani, B., Wijetillake, A., Attili Chiea, R., Hasan, P.-Y., Segovia-Martínez, M., y Lopez-Poveda, E. A. (2025). Comparison of performance for cochlear-implant listeners using audio processing strategies based on short-time FFT or spectral feature extraction. Ear Hear 46(1), 163-183. https://doi.org/10.1097/AUD.0000000000001565

Zwolan, T. A., y Basura, G. (2021). Determining Cochlear Implant Candidacy in Adults: Limitations, Expansions, and Opportunities for Improvement. Semin Hear, 42(4), 331-341. https://doi.org/10.1055/s-0041-1739283

Zwolan, T. A., Schvartz-Leyzac, K. C., y Pleasant, T. (2020). Development of a 60/60 Guideline for Referring Adults for a Traditional Cochlear Implant Candidacy Evaluation. Otol Neurotol, 41(7), 895-900. https://doi.org/10.1097/MAO.0000000000002664

Portadilla Auditio e120

Published

2025-10-29

How to Cite

Lopez-Poveda, E. A., & Marrufo-Pérez, M. I. (2025). Hearing aid or cochlear implant? A reasoned approach to deciding when to prescribe a cochlear implant. Auditio , 9, e120. https://doi.org/10.51445/sja.auditio.vol9.2025.120

Issue

Section

Research Articles

Categories

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.