Hearing aid or cochlear implant? A reasoned approach to deciding when to prescribe a cochlear implant
DOI:
https://doi.org/10.51445/sja.auditio.vol9.2025.120Keywords:
Hearing loss, cochlear implant, hearing aid, indicationsAbstract
Cochlear implants (CIs) were approved as a treatment for profound hearing loss in 1985 in the United States and in 1995 in Spain. Since then, CI indication criteria have evolved in parallel with scientific and technological advances in these devices. Currently, people with severe bilateral hearing loss (≥70 dB HL) are candidates for CIs in most countries. The objective of this study is to investigate whether borderline patients who do not reach severe hearing loss could perform better with CIs than with hearing aids. The scientific evidence analyzed shows that patients with average audiometric thresholds (0.5-2 kHz) of 65 dB HL have an 80% probability of performing better with a CI than with one or two hearing aids. The evidence also shows that monosyllabic word recognition is more sensitive for detecting CI candidates than sentence recognition. Individuals with preoperative word recognition scores below 60% in the best aided condition will perform better with a CI and a contralateral hearing aid than with two hearing aids. Implantation reduces the emotional and social impact of hearing loss and improves the quality of life of these individuals. Our conclusions are consistent with recent studies and international reports suggesting that practitioners should consider referring patients for CI candidacy evaluation when they have audiometric thresholds >60–65 dB HL and word recognition scores <60% in the best aided condition.
Downloads
Visibility and Altmetrics
Global Statistics ℹ️
| 2 Views | 0 Downloads | 
| 2 Total | |
References
Alkaf, F. M., y Firszt, J. B. (2007). Speech recognition in quiet and noise in borderline cochlear implant candidates. J Am Acad Audiol, 18(10), 872-82. https://doi.org/10.3766/jaaa.18.10.6
American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) (2021). Position statement: Pediatric cochlear implantation candidacy. https://www.entnet.org/resource/position-statement-pediatric-cochlear-implantation-candidacy/
Amoodi, H. A., Mick, P. T., Shipp, D. B., Friesen, L. M., Nedzelski, J. M., Chen, J. M., y Lin, V. Y. (2012). Results with cochlear implantation in adults with speech recognition scores exceeding current criteria. Otol Neurotol, 33(1), 6-12. https://doi.org/10.1097/MAO.0b013e318239e5a1
Archbold, S., Lutman, M. E., y Marshall, D. H. (1995). Categories of Auditory Performance. Ann Otol Rhinol Laryngol 166, 312-314.
Benifla, M., Martelli, N., Brenet, E., Compagnon, C., Dubernard, X., y Labrousse, M. (2024). Costs analysis of cochlear implantation in children. European Annals of Otorhinolaryngology, Head and Neck Diseases, 141(4), 209-213. https://doi.org/10.1016/j.anorl.2024.02.012
Beraza-Tamayo, N., Cenjor-Español, C., Gómez-Pajuelo, P., Jáudenes-Casaubón, C., Manrique, M., Nuñez, F., de-Raeve, L., Ramos, A., y Zamora, J. (2023). Libro blanco sobre implantes cocleares en adultos y ancianos. GAES
Bernstein, J. G. W., Pillion, E. M., y Tolisano, A. M. (2025). Clinical Outcomes for Adult Single-Sided Deafness Cochlear. Implantees Exceeding the 5% Candidacy Criterion. Ear Hear, 46(2), 336-346. https://doi.org/10.1097/AUD.0000000000001578
British Deaf Association (2015). Fast facts about the Deaf community. https://bda.org.uk/fast-facts-about-the-deaf-community/
Byrne, D., Dillon, H., Ching, T., Katsch, R., y Keidser, G. (2001). NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures. J Am Acad Audiol, 12(1), 37-51.
Cárdenas, M., y Marrero, V. (1994). Cuaderno de logoaudiometría. Universidad Nacional de Educación a Distancia.
Carlson, M. L., Sladen, D. P., Gurgel, R. K., Tombers, N. M., Lohse, C. M., y Driscoll, C. L. (2018). Survey of the American Neurotology Society on Cochlear Implantation: Part 1, Candidacy Assessment and Expanding Indications. Otol Neurotol, 39(1), e12-e19. https://doi.org/10.1097/MAO.0000000000001632
Carlson, M. L., Sladen, D. P., Haynes, D. S., Driscoll, C. L., DeJong, M. D., Erickson, H. C., Sunderhaus, L. W., Hedley-Williams, A., Rosenzweig, E. A., Davis, T. J., y Gifford, R. H. (2015). Evidence for the expansion of pediatric cochlear implant candidacy. Otol Neurotol, 36(1), 43-50. https://doi.org/10.1097/MAO.0000000000000607
Carlyon, R. P., y Goehring, T. (2021). Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol, 22(5), 481-508. https://doi.org/10.1007/s10162-021-00811-5
Cox, R. M., y Alexander, G. C. (1995). The abbreviated profile of hearing aid benefit. Ear Hear, 16(2), 176-86. https://doi.org/10.1097/00003446-199504000-00005
Davies-Venn, E., Souza, P., Brennan, M., y Stecker, G. C. (2009). Effects of audibility and multichannel wide dynamic range compression on consonant recognition for listeners with severe hearing loss. Ear Hear, 30(5), 494-504. https://doi.org/10.1097/AUD.0b013e3181aec5bc
Dorman, M. F., Loizou, P. C., Kemp, L. L., y Kirk, K. I. (2000). Word recognition by children listening to speech processed into a small number of channels: data from normal-hearing children and children with cochlear implants. Ear Hear, 21(6), 590-596. https://doi.org/10.1097/00003446-200012000-00006
Dunn, C. C., Zwolan, T. A., Balkany, T. J., Strader, H. L., Biever, A., Gifford, R. H., Hall, M. W., Holcomb, M. A., Hill, H., King, E. R., Larky, J., Presley, R., Reed, M., Shapiro, W. H., Sydlowski, S. A., Wolfe, J. (2024). A Consensus to Revise the Minimum Speech Test Battery-Version 3. Am J Audiol, 33(3), 624-647. https://doi.org/10.1044/2024_AJA-24-00008.
Firszt, J. B., Holden, L. K., Skinner, M. W., Tobey, E. A., Peterson, A., Gaggl, W., Runge-Samuelson, C. L., y Wackym, P. A. (2004). Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear, 25(4), 375-87. doi: https://doi.org/10.1097/01.aud.0000134552.22205.ee
Food and Drug Administration (FDA). (2024). Summary of safety and effectiveness data: Premarket Approval Application (PMA) Number: P000025/S129. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=P000025S129
Gatto, A., Tofanelli, M., Valentinuz, G., Mascherin, A., Costariol, L., Rizzo, S., Borsetto, D., Boscolo-Rizzo, P., y Tirelli, G. (2024). Cochlear implant cost analysis in adults: a European narrative review. Eur Arch Otorhinolaryngol, 281(9), 4455-4471. https://doi.org/10.1007/s00405-024-08591-3
Gifford, R. H., Dorman, M. F., Shallop, J. K., y Sydlowski, S. A. (2010). Evidence for the expansion of adult cochlear implant candidacy. Ear Hear, 31(2), 186-94. https://doi.org/10.1097/AUD.0b013e3181c6b831
Gifford, R. H., Shallop, J. K., y Peterson, A. M. (2008). Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiol Neurootol, 13(3), 193-205. https://doi.org/10.1159/000113510
Hainarosie, M., Zainea, V., y Hainarosie, R. (2014). The evolution of cochlear implant technology and its clinical relevance. J Med Life, 7(Spec Iss 2), 1-4.
Johannesen, P. T., Pérez-González, P., y Lopez-Poveda, E. A. (2014). Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. Front Neurosci., 8 214. https://doi.org/10.3389/fnins.2014.00214
Jorgensen, L. E., Benson, E. A., y McCreery, R. W. (2018). Conventional Amplification for Children and Adults with Severe-to-Profound Hearing Loss. Semin Hear, 39(4), 364-376. https://doi.org/10.1055/s-0038-1670699
Kirk, K. I., Pisoni, D. B., y Osberger, M. J. (1995). Lexical effects on spoken word recognition by pediatric cochlear implant users. Ear Hear, 16(5):470-81. https://doi.org/10.1097/00003446-199510000-00004
Leigh, J. R., Dettman, S. J., y Dowell, R. C. (2016). Evidence-based guidelines for recommending cochlear implantation for young children: Audiological criteria and optimizing age at implantation. Int J Audiol, 55(Suppl 2), S9-S18. https://doi.org/10.3109/14992027.2016.1157268
Leigh-Hunt, N., Bagguley, D., Bash, K., Turner, V., Turnbull, S., Valtorta, N., y Caan, W. (2017). An overview of systematic reviews on the public health consequences of social isolation and loneliness. Public Health 152, 157-171. https://doi.org/10.1016/j.puhe.2017.07.035
Livingston, G., Huntley, J., Liu, K. Y., Costafreda, S. G., Selbæk, G., Alladi, S., Ames, D., Banerjee, S., Burns, A., Brayne, C., Fox, N. C., Ferri, C. P., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Nakasujja, N., Rockwood, K., …, y Mukadam, N. (2024). Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. The Lancet, 404(10452), 572–628. https://doi.org/10.1016/S0140-6736(24)01296-0
Lopez-Poveda, E. A., Eustaquio-Martín, A., Fumero, M. J., Gorospe, J. M., Polo López, R., Gutiérrez Revilla, M. A., Schatzer, R., Nopp, P., y Stohl, J. S. (2020). Speech-in-noise recognition with more realistic implementations of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Ear and Hearing, 41(6), 1492-1510. https://doi.org/10.1097/AUD.0000000000000880
Lopez-Poveda, E. A., Eustaquio-Martin, A., Stohl, J. S., Wolford, R. D., Schatzer, R., Gorospe, J. M., Santa Cruz Ruiz, S., Benito, F., y Wilson, B. S. (2017). Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Hearing Research, 348, 134-137. https://doi.org/10.1016/j.heares.2017.02.003
Lopez-Poveda, E. A., Eustaquio-Martin, A., Stohl, J. S., Wolford, R. D., Schatzer, R., y Wilson, B. S. (2016). A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing, 37(3), e138-e148. https://doi.org/10.1097/AUD.0000000000000273
Lopez-Poveda, E. A., Johannesen, P. T., Pérez-González, P., Blanco, J. L., Kalluri, S., y Edwards, B. (2017). Predictors of hearing aid outcomes. Trends Hear, 21, 1-28. https://doi.org/10.1177/2331216517730526.
Manrique, M., Ramos, Á., de Paula Vernetta, C., Gil-Carcedo, E., Lassaletta, L., Sanchez-Cuadrado, I., Espinosa, J. M., Batuecas, Á., Cenjor, C., Lavilla, M. J., Núñez, F., Cavalle, L., y Huarte, A. (2017). Guía clínica sobre implantes cocleares. Acta Otorrinolaringol Esp, 70(1), 47-54. https://doi.org/10.1016/j.otorri.2017.10.007.
Mudery, J. A., Francis, R., McCrary, H., y Jacob, A. (2016). Older Individuals Meeting Medicare Cochlear Implant Candidacy Criteria in Noise but Not in Quiet: Are These Patients Improved by Surgery? Otol Neurotol, 38(2), 187-191. https://doi.org/10.1097/MAO.0000000000001271
National Institute for Health and Care Excellence (NICE) (2019). Cochlear implants for children and adults with severe to profound deafness (TA566). www.nice.org.uk/guidance/ta566
Neve, O. M., Boerman, J. A., van den Hout, W. B., Briaire, J. J., van Benthem, P. P. G., y Frijns, J. H. M. (2021). Cost-benefit Analysis of Cochlear Implants: A Societal Perspective. Ear Hear, 42(5), 1338-1350. https://doi.org/10.1097/AUD.0000000000001021
Newman, C. W., Weinstein, B. E., Jacobson, G. P., y Hug, G. A. (1991). Test-retest reliability of the Hearing Handicap Inventory for Adults. Ear Hear, 12, 355–357. https://doi.org/10.1097/00003446-199110000-00009
Nilsson, M., Soli, S. D., y Sullivan, J. A. (1994). Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. J Acoust Soc Am, 95(2), 1085-99. https://doi.org/10.1121/1.408469
Organización mundial de la salud (OMS) (2021). World report on hearing. https://www.who.int/publications/i/item/9789240020481
Organización mundial de la salud (OMS) (2025). Sordera y pérdida de la audición. https://www.who.int/es/news-room/fact-sheets/detail/deafness-and-hearing-loss
Park, L. R., Gagnon, E. B., y Brown, K. D. (2021). The Limitations of FDA Criteria: Inconsistencies with Clinical Practice, Findings, and Adult Criteria as a Barrier to Pediatric Implantation. Semin Hear, 42(4), 373-380. https://doi.org/10.1055/s-0041-1739370
Perkins, E., Dietrich, M. S., Manzoor, N., O’Malley, M., Bennett, M., Rivas, A., Haynes, D., Labadie, R., y Gifford, R. (2021). Further Evidence for the Expansion of Adult Cochlear Implant Candidacy Criteria. Otol Neurotol, 42(6), 815-823. https://doi.org/10.1097/MAO.0000000000003068
Peters, R. W., Moore, B. C., y Baer, T. (1998). Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people. J Acoust Soc Am, 103(1), 577-587. https://doi.org/10.1121/1.421128
Peterson, G. E., y Lehiste, I. (1962). Revised CNC lists for auditory tests. J Speech Hear Disord, 27, 62-70. https://doi.org/10.1044/jshd.2701.62
Quatre, R., Fabre, C., Aubry, K., Bordure, P., Bozorg-Grayeli, A., Deguine, O., Eyermann, C., Franco-Vidal, V., Godey, B., Guevara. N., Karkas, A., Klopp, N., Labrousse, M., Lebreton, J. P., Lerosey, Y., Lescanne, E., Loundon, N., Marianowski, R., …, y Schmerber, S. (2020). The French Cochlear Implant Registry (EPIIC): Cochlear implant candidacy assessment of off-label indications. Eur Ann Otorhinolaryngol Head Neck Dis, 137(Suppl 1), S27-S35. https://doi.org/10.1016/j.anorl.2020.07.012
Rivas, A., Perkins, E., Rivas, A., Rincon, L. A., Litvak, L., Spahr, T., Dorman, M., Kessler, D., y Gifford, R. (2021). Development and Validation of the Spanish AzBio Sentence Corpus. Otol Neurotol, 42(1), 154-158. https://doi.org/10.1097/mao.0000000000002970
Rodríguez-Ferreiro, M., y Serra, V. (2024). Pruebas de habla en ruido: una revisión de las pruebas disponibles en español. Auditio, 8, e113. https://doi.org/10.51445/sja.auditio.vol8.2024.113
Shukla, A., Harper, M., Pedersen, E., Goman, A., Suen, J. J., Price, C., Applebaum, J., Hoyer, M., Lin, F. R., y Reed, N. S. (2020). Hearing loss, loneliness, and social isolation: a systematic review. Otolaryngol Head Neck Surg 162, 622-633. https://doi.org/10.1177/0194599820910377
Souza, P. E., Boike, K. T., Witherell, K., y Tremblay, K. (2007). Prediction of speech recognition from audibility in older listeners with hearing loss: effects of age, amplification, and background noise. J Am Acad Audiol, 18(1), 54-65. https://doi.org/10.3766/jaaa.18.1.5
Summers, V., Makashay, M. J., Theodoroff, S. M., y Leek, M. R. (2013). Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners. J Am Acad Audiol 24(4), 274-92. https://doi.org/10.3766/jaaa.24.4.4
Velandia, S. L., Prentiss, S. M., Martinez, D. M., Sanchez, C. M., Laffitte-Lopez, D., y Snapp, H. A. (2024). Classification performance of Spanish and English word recognition testing to identify cochlear implant candidates. Int J Audiolec, 1-7. https://doi.org/10.1080/14992027.2024.2427854
Weisleder, P., y Hodgson, W. R. (1989). Evaluation of four Spanish word-recognition-ability lists. Ear Hear 10(6), 387-92. https://doi.org/10.1097/00003446-198912000-00012
Zhang, Y., Johannesen, P. T., Molaee-Ardekani, B., Wijetillake, A., Attili Chiea, R., Hasan, P.-Y., Segovia-Martínez, M., y Lopez-Poveda, E. A. (2025). Comparison of performance for cochlear-implant listeners using audio processing strategies based on short-time FFT or spectral feature extraction. Ear Hear 46(1), 163-183. https://doi.org/10.1097/AUD.0000000000001565
Zwolan, T. A., y Basura, G. (2021). Determining Cochlear Implant Candidacy in Adults: Limitations, Expansions, and Opportunities for Improvement. Semin Hear, 42(4), 331-341. https://doi.org/10.1055/s-0041-1739283
Zwolan, T. A., Schvartz-Leyzac, K. C., y Pleasant, T. (2020). Development of a 60/60 Guideline for Referring Adults for a Traditional Cochlear Implant Candidacy Evaluation. Otol Neurotol, 41(7), 895-900. https://doi.org/10.1097/MAO.0000000000002664
 
											Downloads
Published
How to Cite
License
Copyright (c) 2025 Enrique A. Lopez-Poveda, Miriam I. Marrufo-Pérez

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles will be published under the open Creative Commons Attribution (CC-BY) license. This license allows others to share and adapt the content, even for commercial purposes, as long as appropriate credit is given to the authors and the journal. By submitting their manuscript, authors retain copyright but grant the journal the right to make the first publication under this license.
More information about this license is available at: https://creativecommons.org/licenses/by/4.0/
Articles published between 2001 and 2020
The texts published in this journal in the section "AUDITIO 2001-2020" are subject - unless otherwise indicated - to a Creative Commons Attribution 3.0 Spain license. You can copy, distribute, communicate them publicly, make derivative works and commercial uses provided that you acknowledge the credits of the works (authorship, name of the journal, publishing institution) in the manner specified by the authors or by the journal. The full license can be consulted at http://creativecommons.org/licenses/by/3.0/es/deed.es.
 
						 
			
		 
			 
			 
				
